一鸣文学 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

周五,许秋带着莫文琳,再次进行了IDIC样品的激子结合能测试,测试方法和昨日的ITIC样品一样,低温荧光发光实验。

第二次测试,同样是一次就成功,不过消耗的时间并没有减少太多,从早上九点多开始,一直忙活到下午六点,终于拿到了结果。

结果表明,IDIC的激子结合能为112毫电子伏特,在数值上,与ITIC的117毫电子伏特相当。

基于这两次的结果,加上之前进行的DFT模拟得到的HOMOLUMO能级在分子上的分布图,许秋大概有了一个猜想:

“ADA非富勒烯受体材料低激子结合能的性质,或许是A-D-A这种分子结构所致。

在分子中产生的激子,正电荷会集中在D单元上,负电荷会集中在A单元上,从而导致正负电荷在分子内部便可以实现初步的拆分,降低使其完全拆分成自由电荷所需的能量,表观现象即激子结合能较低。”

这个猜想要验证的话,难度就比较大了。

想要直接证明几乎不可能,只能通过大量测试不同ADA非富勒烯受体材料的激子结合能数据,进行佐证。

其中,一旦出现一个反例,这个猜想就会被推翻,或者需要修改表述、打补丁。

这也很正常。

毕竟科学的本质,就是不断的建立理论、推翻理论、完善理论嘛。

就像最初牛顿三大定律的建立一样,在宏观、低速世界是成立的。

但到微观、高速世界就不成立了,因此后面就有了量子力学以及相对论分别进行补充,这些理论也共同构筑了近现代物理系大厦的基石。

当然,这些也都是现在的理论,或许未来还会被继续推翻、完善。

毕竟人类都是肉眼凡胎,没有X光眼,本身也没办法近光速运动,那么对于微观、高速级别的东西,就很难说的准到底是什么样子。

就算靠仪器测试,难道仪器显示的数据就一定是真的吗?

进一步,我们直接观察到的东西就一定是真的吗?

这种事情不能深想,因为想到最后,难免就会陷入无限循环的怀疑之中。

确实很多东西都无法被证明,也无法被证伪。

这或许也是外国科学家大多皈依宗教,而且还有人提出“科学的尽头就是神学”的原因。

探索的越多,越接近认知的边界,可能越觉得需要一个绝对的“造物主”来支撑这一切的存在。

周日,许秋开始着手另外一项激子扩散距离的测试。

这个测试的方法比较多,前几天,他通过检索文献,一共找到四种方法,最终选择了采用高定向热解石墨(HOPG)衬底,来测试荧光信号的方法。

原因也很简单,这个实验操作,魏兴思之前在漂亮国的时候就进行过,许秋直接复制了魏老师的技能,熟练度中规中矩吧,四阶0%,可能的原因是当时魏老师实操的次数不多,或者由于长时间不在一线进行实验,熟练度不升反降。

但不管怎么说,哪怕只有二阶三阶的熟练度,相比于其他方法,都是强很多的,毕竟许秋有系统嘛,系统影像总比参考文献上的文字说明要形象的多。

消耗若干积分后,许秋查看了五阶100%“HOPG法测试激子扩散距离”的实验操作。

操作方法看起来并不难,只需要将样品旋涂在HOPG上,然后测试不同厚度样品的荧光信号,最后进行拟合即可。

实验原理也比较简单,光电材料在收到光照后产生的激子,一旦扩散到HOPG表面上,将有99%以上的概率被淬灭,其中蕴含的能量以热量的形式被释放,而如果激子在扩散到HOPG表面之前就已经复合,那么将发出荧光信号。

换句话说,假如材料的激子扩散距离比较远,比如在100纳米以上,那么对10纳米左右的样品薄膜来说,荧光信号将几乎为0,因为激子平均能扩散100纳米,而薄膜只有10纳米,在这个过程中,激子移动到边界HOPG的位置的概率非常高,激子都被HOPG给“吃”了,自然无法产生荧光信号。

反之,如果激子扩散距离比较近,比如10纳米,那么10纳米左右的薄膜,自然是能够产生荧光信号的,此时的荧光淬灭效率大约为50%,也就是发光强度为正常强度的一半。

下午,许秋提前买好的HOPG,已经被快递送到材一2楼的门房。

HOPG指的是热解石墨是经高温处理,性能接近单晶石墨的一种新型石墨。

顾名思义,这种这种石墨是高度取向的,可以通过实验操作得到非常光滑的高导电率表面,该表面可以在扫描隧道显微镜中检查,或者用作其他正在研究的材料的衬底。

根据HOPG的镶嵌角(马赛克扩散角)的不同,可将其分为A、B、C三个等级。

A级的镶嵌角最小,通常在0.5度左右,品质最好,也最接近单晶的性质,当然价格也最贵。

C级的镶嵌角最大,通常在1.5度以上,品质最差,但价格最便宜。

B级的镶嵌角介于A和C之间,通常在0.8度左右。

许秋在网上货比三家,最终找了一家国内的HOPG厂家。

他们卖的最小的尺寸是长宽高10*10*1毫米,也就是一平方厘米的面积,一毫米的高度。

这章没有结束^.^,请点击下一页继续阅读!

喜欢我有科研辅助系统请大家收藏:(www.ymwx.org)我有科研辅助系统一鸣文学更新速度全网最快。

一鸣文学推荐阅读: 悠闲乡村,我体内长了一颗神树我的1978小农庄巅峰狂婿破产之后从山村开始崛起乡村医师的金手指全职艺术家乡野村民地产之王都市巅峰战神我只想安静的当个怪兽返回2006重生之商路弯弯相声贵公子文娱之开局成过气肥仔这个人强得过分却非要吃女帝软饭极品神豪从签到开始最佳废婿李斯科的美国生活开局在出租屋里捡到一个亿都市无上仙医天策战神仙帝的九个女儿超凡透视最强龙魂最强医圣狂婿诡异小说成真,你们要相信科学啊我是演技派软饭硬吃的文娱生活万界随机购物系统极品护花保镖萌娃的无敌奶爸豪门至尊赘婿超级花呗系统你管这叫流浪歌手?重生似水青春人到中年四合院:我成了何雨柱我加载了社死系统回到过去当富翁我成了震惊全世界的全能学神无敌隐世的我被曾孙女直播曝光男人三十都市之重立天庭开局获得完美音乐系统混世矿工天价片酬,我反手捧红路人隐居万年的我,被向往曝光了我的妖孽美女总裁文娱从综艺开始
一鸣文学搜藏榜: 我的1978小农庄拼搏年代音乐系导演超级学霸系统一秒成学神从流量到影帝签到系神豪都市之见钱眼开从小鲜肉成为文娱大佬校花的贴身高手悠闲乡村,我体内长了一颗神树跑男之娱乐生活美利坚纵享人生禁欲系神豪娱乐大亨从唱铁窗泪开始我的冰山总裁老婆极品桃花运无敌从许愿开始都市之天上掉下百万亿重生之大纨绔摘星名厨随身地球副本一品天才纯情护卫全球影帝从扮演秦始皇开始叶小康的爱情日记君临天下赌徒终极狂少悍狼黑锅山野情事我是神豪我怕谁2美食:投食全人类医道之美女如云都市超级兵王我的美女局长我居然成了上门女婿超级逆袭我爸是华夏首富我上交的副本开启了灵气复苏四合院:我前女友是秦淮茹李煜的娱乐帝国开局获得学习系统南洋逍遥小岛主神豪从吃保底开始白手当家被雷劈之后的我崛起了我的极品护士老婆混子的江湖妖孽兵王在都市
一鸣文学最新小说: 热搜第一:叫你捡漏你开挂啊带着爸妈去上班李氏四合院里的老中医再启仙途我的金融帝国百元求生:从潘家园捡漏开始放弃留学,我打造了世界第一名校娱乐:别联系了,真不熟从重生开始合租浪在娱乐圈我的夫妻关系竟能数据化四合院里的唯一老实人首富后才知是反派我靠吹牛发家致富硅谷大帝武侠之父韩娱之kpopstar星媒舵手地窟求生:开局食物增幅三十倍文娱:让你唱歌,你搁这作法?韩娱之隔世斑斓汽车公司?不,是国货之光我写的娱乐文被杨老板看到了怪物食堂好莱坞制作平行空间超级武圣我意花丛翡翠王邪情公子贴身妖孽血染一生邪霸都市都市无敌特种兵校园超级霸主贴身女仆很妖娆美女的贴身男秘冰帝校园行黑道特种兵暗龙特工极品学生美女身边的金牌高手限量版男人邪恶宝典校园纨绔特工混世穷小子警花的近身高手都市护花高手乡村奇医