一鸣文学 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

“被你看出来啦,魏老师主要也是挑的这个毛病。”陈婉清叹了口气道:

“我设计的这几个A-D-A分子,D、A单元都比较小众,必须从原材料开始合成,不似D-A共聚物给体中,大部分的D、A单元单体,都可以直接从光电材料公司直接购买,然后拿到单体直接做聚合。”

“嗯……”许秋深以为然的点点头,随后补充道:

“当时我更倾向于先从PDI分子开始做,也有这方面的考虑,毕竟我之前只做过Stille耦合反应,虽然也上过《有机合成》的课程和实验课,但是实操经验并不多。

而相比于A-D-A分子,PDI分子结构单一,里面涉及到的有机合成种类较少,只要掌握两三类反应,比如溴取代反应,氨基和羧基的缩合反应,即可实现大多数的分子结构设计,拿来练手再适合不过了。”

陈婉清瞪了他一眼,“你都知道,那当时怎么不和我说呢?”

“你也没问啊……”许秋看她似乎有动手的征兆,忙转移话题:“要不,你也来和我一起做PDI?”

话音刚落,他就挨了一记左勾拳。

“我就不信我做不出来了,最近我可是查了不少资料,现在新设计的合成路线都已经做好了。”陈婉清余气未消,依然是一副气鼓鼓的样子。

她把PPT跳转到新的一页:“喏,你再看看。”

“四、七、九、十一步的合成反应?这么多步?学姐,你是认真的?”许秋惊讶,反应步骤多的话,最终产率会很低,而且也更容易出现意外,反正他是没有勇气,上来就挑战这么高的难度。

“当然是认真的,怎么,你有意见?”陈婉清没好气道。

“没,没有。”许秋摆了摆手,心想‘学姐现在而文章已经够她毕业了,想折腾就随她去吧,现在强行劝的话多半也劝不回来,等她到时候碰壁了,再劝也不迟,反正最多浪费一些时间’。

抱着这样的想法,他再次看向了学姐PPT上的其他部分,除了材料合成外,她还提及了光吸收、能级匹配、共混形貌这三方面内容。

过了一会儿,许秋又问道:“为什么要把受体材料的光吸收范围,限定在400-800纳米呢?”

“巧了,魏老师当时也问过我这个问题,”陈婉清解释道:“他的建议是,先从400-600纳米吸收的宽禁带宽度的非富勒烯材料入手比较合适。

因为可以和现阶段最佳给体材料PCE10,以及你的PCE11光吸收互补,后两者你知道的,都是窄禁带宽度的材料,光吸收范围大约在600-800纳米。

不过,原则上,他倒是没有反对我继续做窄带隙的受体,也鼓励我朝分子结构多样性的方向去努力,开发出一些有别于有别于现有体系的,不一样的分子来。”

“嗯,他这么说我倒是能理解他,他毕竟研究了很多年PDI体系,遇到像A-D-A这类的新体系,很容易把原有体系的一些研究思路代入进去。”许秋点点头道。

“这么说来,你更赞同我的想法?”陈婉清歪了歪脑袋。

“不,你们俩我都不赞同。”许秋摇了摇头:“我认为可以更加激进一些,把非富勒烯受体材料的带边扩宽至900、甚至1000纳米。”

“这样不可行吧?”陈婉清下意识的反驳:“真把材料的禁带宽度弄那么小,换算成禁带宽度,就只有1.2-1.4电子伏特了,器件开路电压岂不是只有0.4、0.5伏特了。”

“基于富勒烯衍生物的理论,是这样的没错,可非富勒烯的结构和富勒烯的球状结构是完全不同的,现阶段的机理研究也较少,并不一定适用于同一套理论。”许秋进一步解释道:

“如果我们站在更上层,跳出传统富勒烯体系的框架,直接根据肖克利-奎塞尔限制,就会发现宽禁带宽度下,光电转换效率的上限比窄带隙的低了不少。

而极值点,正在1.2-1.4电子伏特处,也对应于900-1000纳米的吸收带边。”

见学姐陷入思索,许秋继续道:

“我认为,缩小材料的禁带宽度,像硅材料看齐,这是有机光伏领域将来的出路。

总不能一直指望有机光伏材料的效率只有10-12%吧,这还是在实验室、无水无氧、小面积这些条件下做出来的器件。

如果应用的话,面对工厂生产、空气中制备、大面积、长期使用这些条件,做出来器件的效率可能就只有5%。

当然,路要一步步的走,也不急着一步到位,我们可以慢慢选择一个切入点先开始实验,再徐徐图之,但不能被现有的框架束缚了我们的想法。”

“我明白了,”陈婉清缓缓点了点头:“之后再设计新分子的时候,我会考虑这一点的。”

“说一千,道一万,现在都是纸上谈兵,学姐先合成出来一个分子再说吧……”

许秋刚说完,又挨了一记右勾拳。

“会说话你就多说点,”陈婉清白了他一眼:“对了,那你之后还要坚持做PDI么?那不也是宽带隙的吗?”

“其实,和你讨论了一番,也帮我理顺了思路,放假前那会儿我提出研究思路的时候,还没想的这么深远。”许秋挠了挠头道:

本小章还未完~.~,请点击下一页继续阅读后面精彩内容!

喜欢我有科研辅助系统请大家收藏:(www.ymwx.org)我有科研辅助系统一鸣文学更新速度全网最快。

一鸣文学推荐阅读: 悠闲乡村,我体内长了一颗神树我的1978小农庄巅峰狂婿破产之后从山村开始崛起乡村医师的金手指全职艺术家乡野村民地产之王都市巅峰战神我只想安静的当个怪兽返回2006重生之商路弯弯相声贵公子文娱之开局成过气肥仔这个人强得过分却非要吃女帝软饭极品神豪从签到开始最佳废婿李斯科的美国生活开局在出租屋里捡到一个亿都市无上仙医天策战神仙帝的九个女儿超凡透视最强龙魂最强医圣狂婿诡异小说成真,你们要相信科学啊我是演技派软饭硬吃的文娱生活万界随机购物系统极品护花保镖萌娃的无敌奶爸豪门至尊赘婿超级花呗系统你管这叫流浪歌手?重生似水青春人到中年四合院:我成了何雨柱我加载了社死系统回到过去当富翁我成了震惊全世界的全能学神无敌隐世的我被曾孙女直播曝光男人三十都市之重立天庭开局获得完美音乐系统混世矿工天价片酬,我反手捧红路人隐居万年的我,被向往曝光了我的妖孽美女总裁文娱从综艺开始
一鸣文学搜藏榜: 我的1978小农庄拼搏年代音乐系导演超级学霸系统一秒成学神从流量到影帝签到系神豪都市之见钱眼开从小鲜肉成为文娱大佬校花的贴身高手悠闲乡村,我体内长了一颗神树跑男之娱乐生活美利坚纵享人生禁欲系神豪娱乐大亨从唱铁窗泪开始我的冰山总裁老婆极品桃花运无敌从许愿开始都市之天上掉下百万亿重生之大纨绔摘星名厨随身地球副本一品天才纯情护卫全球影帝从扮演秦始皇开始叶小康的爱情日记君临天下赌徒终极狂少悍狼黑锅山野情事我是神豪我怕谁2美食:投食全人类医道之美女如云都市超级兵王我的美女局长我居然成了上门女婿超级逆袭我爸是华夏首富我上交的副本开启了灵气复苏四合院:我前女友是秦淮茹李煜的娱乐帝国开局获得学习系统南洋逍遥小岛主神豪从吃保底开始白手当家被雷劈之后的我崛起了我的极品护士老婆混子的江湖妖孽兵王在都市
一鸣文学最新小说: 热搜第一:叫你捡漏你开挂啊带着爸妈去上班李氏四合院里的老中医再启仙途我的金融帝国百元求生:从潘家园捡漏开始放弃留学,我打造了世界第一名校娱乐:别联系了,真不熟从重生开始合租浪在娱乐圈我的夫妻关系竟能数据化四合院里的唯一老实人首富后才知是反派我靠吹牛发家致富硅谷大帝武侠之父韩娱之kpopstar星媒舵手地窟求生:开局食物增幅三十倍文娱:让你唱歌,你搁这作法?韩娱之隔世斑斓汽车公司?不,是国货之光我写的娱乐文被杨老板看到了怪物食堂好莱坞制作平行空间超级武圣我意花丛翡翠王邪情公子贴身妖孽血染一生邪霸都市都市无敌特种兵校园超级霸主贴身女仆很妖娆美女的贴身男秘冰帝校园行黑道特种兵暗龙特工极品学生美女身边的金牌高手限量版男人邪恶宝典校园纨绔特工混世穷小子警花的近身高手都市护花高手乡村奇医